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1. Introduction

The field of heavy quark spectroscopy is experiencing a rapid renaissance, mainly propelled

by the emergencies of several unusual charmonium resonances, of which X(3872), Y (4260)

are the highlights [1]. Accompanied with these unexpected discoveries, progress has also

been made steadily in the more traditional sector of charmonium spectroscopy, exemplified

by the recent sightings of several long-awaited particles such as ηc(2S), hc, and particularly

the doubly-charmed baryons such as Ξ+
cc, Ξ++

cc . Precise knowledge of their properties will

help to refine our present understanding of heavy quark dynamics [2].

After the tentative establishment of the doubly charmed baryons [3], one may naturally

expects to fill the baryon family with the last missing member, i.e., baryons composed

entirely of heavy quarks, denoted the QQQ states in short. Being a baryonic analogue of

heavy quarkonium, the triply-heavy baryons are of considerable theoretical interest, since

they are free of light quark contamination and may serve as a clean probe to the interplay

between perturbative and nonperturbative QCD.

One of the basic properties of these heaviest baryons in Nature is their masses, which

will be the primary concern of this paper. In contrast with the spectra of the singly-

heavy and doubly-heavy baryons, to which a vast number of literature based on either

phenomenological approaches or lattice QCD simulations are dedicated, only sparse atten-

tion has been paid to the spectroscopy of triply-heavy baryons, perhaps mainly due to the

lack of experimental incentive.
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The interest toward these baryons can be traced back to Bjorken, who first carried

out a comprehensive studies on their properties two decades ago, particularly focusing on

the discovery potential of the triply-charmed baryon state [4]. Reconstructing a QQQ

candidate is a rather challenging job experimentally, since it is difficult to separate all

the decay products emerging from the cascade decay chain QQQ → QQq → Qqq from

the copious hadronic background. Nevertheless, according to Bjorken, some semileptonic

decay channels such as Ω++
ccc → Ω− + 3µ+ + 3νµ, may offer a clean signature to trigger a

ccc event.

Needless to say, the discovery potential of triply-heavy baryons also crucially depends

on the production environment. Baranov and Slad have shown that the production cross

sections for triply-charmed baryons at e+e− collider are too tiny to be practically rele-

vant [5]. Gomshi-Nobary and Sepahvand have recently calculated the fragmentation func-

tions of c and b evolving into various triply-heavy baryons, and estimated that the corre-

sponding fragmentation probabilities vary in the range 10−7 ∼ 10−4 [6]. They consequently

estimated two largest cross sections, which are associated with producing Ωbcc and Ωccc, to

be about 2 and 0.3 nb in the forthcoming Large Hadron Collider (LHC) experiment with

cuts of pT > 10 GeV and |y| < 1. For an integrated luminosity of 300 fb−1 (about one year

of running at the LHC design luminosity L = 1034 cm2 s−1), the amount of Ωbcc and Ωccc

yield can reach about 6×108 and 1×108. It seems rather promising to establish these two

states in such a large data sample.

Stimulated by the discovery possibility of triply-heavy baryons in near future, it is no

longer of only academic interest to study their properties like mass spectra. Unfortunately,

no predictions to the masses of triply heavy baryons from lattice QCD simulations have

emerged yet (only the static three-quark potential has been measured [7, 8]), and one has

to resort to other theoretical means at this moment.

Heavy quarkonium spectroscopy is traditionally the arena of phenomenological po-

tential models, which in general incorporate a long-range confinement interaction [9 – 11]

(see also Godfrey’s contribution in [2]). Nevertheless, recent advances in nonrelativistic

effective field theories of QCD, particularly the effective theory dubbed potential NRQCD

(pNRQCD), has started to put heavy quarkonium spectroscopy on a model-independent

ground [12] (for a recent review, see [13]). A novel aspect of this effective field theory

is that the interquark potential arises as the matching coefficients. In this language, dif-

ferent quarkonium states are categorized with respect to the relative magnitude between

the typical momentum scale, mv, and the nonperturbative QCD scale, ΛQCD. In the case

of mv À ΛQCD, the corresponding state is said to be weakly coupled, and the dynamics

is largely dictated by the short-distance potential which can be calculated order by or-

der in αs, whereas the confinement potential is unimportant; in the other situation like

mv ∼ ΛQCD, the state is said to be strongly coupled since the potential is no longer cal-

culable in perturbation theory, instead must be determined by nonperturbative methods

such as lattice QCD. It is in the latter situation that a pNRQCD framework intimately

resembles the phenomenological Cornell model.

Contrary to the traditional wisdom that the confinement potential is indispensable for

any heavy quarkonium state, evidences are accumulating to hint that Υ, Bc may well be
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identified with the weakly-coupled system, whereas J/ψ lies in the borderline between the

weak and strong couping regime, and the first few excited bottomonium states (far from

the open flavor threshold) belong to the strongly-coupled system [13]. Numerous work

involving higher order perturbative calculation of the mass spectrum seems to endorse the

weak-coupling assignment of the lowest-lying heavy quarkonium states (for an incomplete

list of work on perturbative computation of mass spectrum, see Ref. [14 – 19]).

In parallel with the formulation of pNRQCD for the quarkonium, Brambilla, Vairo and

Rosch have recently laid down an analogous framework for triply-heavy baryons [20]. The

effective Lagrangian has been written down for both weakly-coupled and strongly-coupled

QQQ states, with some of the matching coefficients supplied. Among various possible ap-

plications of Ref. [20], exploring the mass spectra of QQQ states is the most straightforward

to think of. This is the very goal of the present work. To make things more tractable, we

will confine ourselves in this work to the weakly-coupled states only. The Ωttt, if exists,

would be an ideal prototype for such a state. However, to be phenomenologically relevant,

we have to stick to baryons made exclusively of bottom or charm. As in quarkonium,

most probably only the ground states are amenable to a weak-coupling assignment. To be

objective, due to weaker interquark color strength in a baryon than in a meson, and not so

heavy charm and bottom masses, one cannot exclude the possibility that even the ground

states might be strongly coupled.

Despite this disclaimer, we will proceed by assuming that the QQQ ground states are

indeed the weakly-coupled system. In this work, we attempt to estimate the leading order

contribution to the binding energy, therefore for this purpose, only the tree-level static inter-

quark potential, i.e., Coulomb potential, needs to be considered. Since rigorously solving a

three-body Coulomb bound state problem is beyond our current ability, we have to resort

to some sort of approximation method. Stimulated by success of the variational method in

coping with few-body atomic system, we will invoke this simple but efficient approximation

scheme to address our baryonic problem. For baryons containing simultaneously b and c,

we will take advantage of the mass hierarchy mb À mc to guide our variational analysis,

just in analogy with that in the simple 3-body atomic system such as helium atom and the

ionized hydrogen molecule, the physical picture becomes much more tractable by exploiting

the fact mN À me.

The rest of the paper is distributed as follows. In Section 2, we present a brief in-

troduction to the most relevant features of the triply-heavy baryons in the weak-coupling

regime. In Section 3, which is the main body of this work, we perform a detailed variational

analysis to the binding energy of various QQQ ground states. Three different classes of

triply-heavy baryons, bcc, ccc (bbb) and bbc states are treated separately, with the hierarchy

mb À mc utilized as a guidance for choosing proper trial states. Considerable amount of

effort has been devoted to the bbc state, which is the most interesting case, but also most

difficult to analyze. We have employed three different approaches to study this state and

explored the implication of each approach in depth. Particularly the relevance of the com-

pact diquark picture is discussed. In Section 4, we present our predictions to the masses

of all the lowest-lying triply heavy baryons, and compare our results with other work. We

summarize and present an outlook in Section 5.
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2. Weakly coupled QQQ states

In this section we recapitulate the major aspects of weakly-coupled triply heavy baryons

which are most relevant to this work. For more comprehensive discussion from the per-

spective of pNRQCD, we refer the interested readers to Ref. [20, 13].

To efficiently investigate the low energy properties of a tripled heavy baryon, such as

binding energy, it is convenient to work with a low energy effective theory that focuses

on the most relevant degrees of freedom. In a weakly-coupled QQQ state, the relevant

low energy degrees of freedom are nonrelativistic heavy quarks and (ultrasoft) gluons with

energy and momentum of order mv2, just like in a weakly-coupled quarkonium. All the

high energy degrees of freedom, which can only appear in the virtual states, have been

integrated out explicitly. One particularly important high energy mode is the (soft) gluons

with momentum of order mv, whose effects are encoded in the low energy theory as the

interquark potentials. Since we have mv À ΛQCD in a weakly coupled state, the potentials

can be determined in perturbation theory by matching procedure. There are infinite num-

ber of potentials, which are organized in expansions of 1/m. The most important potential

is the O(1/m0) (static) potential.

The explicit form of potentials depends on the overall color configuration of quarks.

Three heavy quarks can be in either color singlet, octet or decuplet state. The color-singlet

state represents the most important case, since it constitutes the leading Fock component

of a baryon. The singlet static potential is well known,

V
(0)
S = −2αs

3

(

1

|x1 − x2|
+

1

|x2 − x3|
+

1

|x3 − x1|

)

+ O(α2
s) , (2.1)

where the color interaction between any pair of quarks is attractive. In general, in the

color octet and decuplet configurations, some or all pairs of quarks will repel each other.

Thus far, the low energy effective theory is completely depicted by a set of uncoupled

Schrödinger equations governing the motion of heavy quarks in different color configura-

tions. The situation becomes more intriguing when ultrasoft gluons are included. Since the

typical wavelength of ultrasoft gluons is much longer than the typical interquark distance,

the gluon fields can be multipole expanded. Very much like the electromagnetic multipole

transition in atoms, ultrasoft gluons can also induce chromo-electromagnetic multipole

transition from one heavy quark color configuration to a different one. In particular, a

chromo-electric dipole transition can occur between a color-singlet QQQ configuration to

an octet one. The interaction between bound heavy quarks and vacuum gluonic fluctuations

through this chromo-E1 operator, will generate the leading nonperturbative correction to

mass of a triply-heavy baryon, as a manifestation of Lamb shift in QCD 1. The magnitude

of this nonperturbative correction depends on the relative size between mv2 and ΛQCD. It

is quite difficult to estimate this effect accurately, and we will not consider it further.

We end this section by commenting briefly on the solidity of the weak-coupling as-

signment to the lowest-lying triply heavy baryons that are of practical interest. As was

1The analogous effect in quarkonium system, originally considered by Voloshin [21], has been extensively

explored by many authors.
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admitted in Introduction, since the interquark color strength in a baryon is only a half

of the quark-antiquark color strength in a quarkonium, the typical dimension of a triply

heavy baryon, say, Ωbbb, is expected to be considerably fatter than that of Υ. One may

worry that the wave function of the former could permeate deeply into the confinement

region. Fortunately, as will be shown quantitatively in the forthcoming section, the in-

terquark attraction is effectively enhanced due to the influence of the third quark, so the

actual situation turns out to be considerably better than this pessimistic anticipation.

3. Variational estimate of binding energy

In this section, we attempt to estimate the binding energy of various QQQ ground states.

Our starting point is the color-singlet hamiltonian:

HS = −1

2

3
∑

i=1

∇2
i

mi
+ V

(0)
S + · · · , (3.1)

where the ellipsis stands for the higher-dimensional potentials suppressed by powers of

1/m. Because the purpose of this work is to calculate the leading O(α2
s) contribution, we

will restrict to the lowest order static potential only.

To describe a bound state, we need first separate the relative motions of quarks from

the center-of-mass motion in (3.1). There are infinite ways to perform this separation. A

simple way is to replace the old coordinates by the center-of-mass coordinate plus two new

coordinates defined as the positions of the quark 1, 2 relative to the quark 3:

X =
1

∑

mi

3
∑

i=1

mixi ,

r1 = x1 − x3 ,

r2 = x2 − x3 . (3.2)

In terms of these new coordinates, the hamiltonian (3.1) can be separated into

HS = HCM
S + hS , (3.3)

where HCM
S = −∇2

X
/(2

∑

mi) is the center-of-mass part, and the part governing the rela-

tive motion reads

hS = − ∇2
r1

2m13
− ∇2

r2

2m23
− ∇r1

· ∇r2

m3
− 2αs

3

(

1

r1
+

1

r2
+

1

r12

)

, (3.4)

where r12 = |r1 − r2|, mij = (1/mi + 1/mj)
−1 is the reduced mass of quark i and j. In

such a coordinate system, the quark 3, sitting at the origin, is artificially singled out from

two other quarks.

Our task then becomes solving the bound state problem defined in (3.4). In the

following, we will use the variational method to estimate the corresponding binding energy

of each type of QQQ ground states.
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r12

c

c

b

r2

r1

Figure 1: Sketch of the coordinate system used for the bcc state.

3.1 bcc

We start from the simplest case, the baryon made of one heavier bottom quark of mass M

and two lighter charm quarks of mass m (throughout this section, we will use the notation

M ≡ mb and m ≡ mc).

It is convenient to choose a coordinate system as specified in (3.2), with b sitting

at the origin. This coordinate system is sketched in Fig. 1. Subsequently, substituting

m1 = m2 = m and m3 = M into (3.4), the hamiltonian describing the internal motion of

a singlet bbc state reads

hS = − ∇2
1

2mred
− ∇2

2

2mred
− ∇1 · ∇2

M
− 2αs

3

(

1

r1
+

1

r2

)

− 2αs

3

1

r12
, (3.5)

where mred = (1/m + 1/M)−1 is the reduced mass of c and b. Note in this choice of

coordinates, the motion of b is embodied in the reduced mass and the operator ∇1 ·∇2/M .

Let us first consider an ideal bcc state with M/m → ∞. In this situation, the b quark

just acts as a static color source, with two c quarks revolving around. This picture is very

similar to that of the two-electron atoms such as H−, He and Li+, where the nucleus is

practically fixed in space, and two K-shell electrons orbit about it. Estimating the energy

of the two-electron atoms is considered as a classical application of the variational method,

which has been discussed virtually in every quantum mechanics textbook (e.g., see [22]).

Closely following the textbook treatment of helium, we may approximate the bcc

ground state to be the one in which each of the c moves in the 1s orbital of an effective

Coulomb potential, somewhat stronger than −2αs/3r. This is so because the attractive

color interaction felt by each c due to b is strengthened due to the attraction exerted by

another c. This is in opposite situation to He, where nuclear charge felt by each electron

is partly screened due to the repulsion exerted by another electron.

In a physical bcc state, the hierarchy M À m is much less perfect than that in a

helium. Nevertheless, the above ansatz about the form of the ground state wave function

still seems plausible. What we need is to take the motion of b into account. For notational

simplicity, we will take the “baryonic” unit mred = 2αs/3 = 1, in which all the length and

– 6 –
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energy scales are measured in the unit of the Bohr radius (mred 2αs/3)
−1 and Bohr energy

mred (2αs/3)
2. We choose the spatial part of trial wave functions as

Ψ(r1, r2) = f(r1)f(r2) , (3.6)

where

f(r) =
λ3/2

√
π

e−λr (3.7)

is the normalized 1s Coulomb wave function. Here λ is a variational parameter, which

characterizes the effective color charge of b perceived by each of the c. Obviously, when

the attractive interaction between two charm is turned off, λ would simply be 1. For the

reason discussed earlier, we expect λ > 1 in our case, so that each c can be thought of

moving on a squeezed 1s orbital. This is opposite to what is expected for a helium.

In the He ground state, two K-shell electrons must form a spin singlet to obey Fermi

statistics, since its spatial wave function is symmetric under the interchange of two elec-

trons. Due to the extra color degree of freedom carried by quarks, two c quarks in the bcc

ground state must instead be a spin triplet. When combined with b, the lowest-lying bcc

baryon can be either JP = 1
2
+

or 3
2
+
, which are degenerate up to O(m2α4

s/M) corrections

due to the hyperfine splitting.

We now attempt to find the expression for the ground state energy, E. Taking the

expectation value of hS with the trial wave function in (3.6), after some effort one obtains

E = −λ2 + 2λ(λ − 1) + J , (3.8)

where

J = −λ6

π2

∫∫

d3r1d
3r2

e−2λ(r1+r2)

r12
= −5

8
λ , (3.9)

measures the average potential energy stored between two charm quarks.

Note that the double integral involving the ∇1 ·∇2 term vanishes, because of spherical

symmetry possessed by the 1s wave functions. Thus, the effect of kinetic energy of b is

fully taken into account by the reduced mass mred.

The minimum of energy can be found by requiring dE/dλ = 0, which leads to

λ =
21

16
, (3.10)

indeed compatible with our expectation. The corresponding ground state energy is

E = −
(

21

16

)2

−→ −
(

7

8

)2

mred α2
s , (3.11)

where the Bohr energy has been inserted in the last term, to recover the actual dimension

of energy.
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3.2 ccc

The triply charmed baryon states no longer have an atomic counterpart. On the other

hand, the ccc ground state is highly constrained by symmetry. To have lowest energy, it

necessarily possesses a totally symmetric spatial wave function. After the totally antisym-

metric color wave function is included, Fermi statistics then demands that it must have

JP = 3
2

+
.

We again work with a coordinate system defined in (3.2), with one c, artificially denoted

charm 3, fixed at the origin. The hamiltonian depicting the relative motion of three identical

c can be obtained by making the replacement M → m in (3.5). We then have the reduced

mass mred = m/2. To condense the notation, we will work with the “baryonic” unit, in

which the corresponding hamiltonian becomes

hS = −∇2
1

2
− ∇2

2

2
− ∇1 · ∇2

2
−

(

1

r1
+

1

r2
+

1

r12

)

. (3.12)

We are attempting to seek a proper form for the trial wave function for ccc ground state.

One simplest choice is motivated from that adopted for a bcc state. Let us temporarily

imagine the charm 3 can be distinguished from the rest of two, then (3.6) constitutes a

reasonable representation for such a state. Now coming back to a physical ccc state, to

account for the indistinguishablity of c, we should fully symmetrize (3.6). With the spin

part of wave function suppressed, the trial wave function then reads

Ψ(r1, r2) =
f(r1)f(r2) + f(r1)f(r12) + f(r12)f(r2)

√

3 (1 + 2T )
, (3.13)

where f is the same as given in (3.7), and contains a variational parameter λ. One can

check this wave function is symmetrical under the interchange of any two charm quarks.

The Ψ is normalized by incorporating the overlap integral T ,

T =
λ6

π2

∫∫

d3r1d
3r2 e−λ(2r1+r2+r12) =

176

243
. (3.14)

Taking the expectation value of hS in the trial state (3.13), after some straightforward

manipulation, we end up with the expression

E =
−λ2 + 2λ(λ − 1) + J − λ2T + 2(λ − 1)P − 4Q + F − G

1 + 2T , (3.15)

where J has been given in (3.9), and

P =
λ6

π2

∫∫

d3r1d
3r2

e−λ(2r1+r2+r12)

r1
=

68

81
λ ,

Q =
λ6

π2

∫∫

d3r1d
3r2

e−λ(2r1+r2+r12)

r2

=
λ6

π2

∫∫

d3r1d
3r2

e−λ(2r1+r2+r12)

r12
=

16

27
λ .

F =
λ6

π2

∫∫

d3r1d
3r2 e−λ(2r1+r2) ∇2

2 e−λr12 = −112

243
λ2 ,

G =
λ6

π2

∫∫

d3r1d
3r2 e−λ(r1+r2) ∇1 · ∇2 e−λ(r1+r12) =

56

243
λ2 . (3.16)
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b b

c

r

r1r2

−R

2

R

2
0

Figure 2: Sketch of the coordinate system adopted for the bbc state.

Note the exchange integrals P, Q F and G arise from the symmetrization effect, which

are absent in the expression for the energy of the bcc baryon, (3.8). In particular, G, the

double integral involving ∇1 · ∇2, no longer vanishes this time.

Substituting the results of these integrals into (3.15), we obtain

E = −2 595

952
λ +

531

595
λ2 . (3.17)

The optimum can be found by variational principle,

λ =
4325

2 832
≈ 1.527 , (3.18)

and

E = −3 741 125

1 797 376
−→ −0.925mred α2

s , (3.19)

where the normal unit is recovered in the last entity.

It is interesting to compare the results we have got for the bcc and ccc ground states.

First lowering the b mass in a bcc state down to m, we get a fictitious ccc state with one

c distinguishable from the other two. Comparing (3.19) and (3.11), we immediately find

the symmetrization effect tends to lower the energy. Moreover, by comparing (3.18) and

(3.10), we find the symmetrization effect also tends to compress the bound state size more.

For actual bcc and ccc states, we find EΩccc
> EΩbcc

(note mred in two cases are

different), which implies that charm quarks in Ωbcc are more tightly bound than in Ωccc.

This is consistent with the general expectation that a bound state with constitutes of vastly

disparate masses is more stable than that with equal-mass constitutes, say, a hydrogen atom

is more stable than a positronium.

3.3 bbc

We finally turn to baryons made of two heavier b quarks and a lighter c quark. This type

of baryon is more complicated than the preceding two, because the effective potential felt

by c is no longer spherically-symmetric, but merely axially-symmetric.

– 9 –
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To make the symmetry between two b quarks manifest, we may adopt a more appro-

priate coordinate system other than (3.2). Letting m1 = m2 = M , m3 = m, we define the

following new coordinates:

X =
M(x1 + x2) + mx3

2M + m
,

R = x1 − x2 ,

r = x3 −
x1 + x2

2
. (3.20)

Note now the coordinate origin coincides with the middle point between two b quarks. The

geometry of these new coordinates can be clearly visualized in Fig. 2. Substituting (3.20)

into the original hamiltonian (3.1), we find that the part of hamiltonian responsible for the

internal motion is

hS = − ∇2
R

2Mred
− 2αs

3

1

R
− ∇2

r

2mred
− 2αs

3

(

1

r1
+

1

r2

)

, (3.21)

where Mred = M/2, mred = (1/m + 1/2M)−1 are the reduced masses, and r1 = |r − R

2 |,
r2 = |r + R

2 |.
A nuisance may deserve some caution before we move on further. Two strong coupling

constants in (3.21) have been tacitly assumed to be evaluated at the same renormalization

scale µ. This procedure seems incompatible with our intuition that the first αs should

be affiliated with a scale ∼ 1/〈R〉, and the second one with a different scale ∼ 1/〈r〉,
where 〈R〉 and 〈r〉 represent the typical values of R and ri, respectively. When M and

m are widely separated, 〈R〉 ¿ 〈r〉 is expected, and this recipe will miss the contribu-

tions of large logarithm ln(〈r〉/〈R〉), no matter which value of µ is chosen. The symptom

encountered in this equal-αs ansatz is a typical shortcoming of lowest-order perturbative

calculation in a multi-scale problem, and one in principle can ameliorate its prediction by

appealing to renormalization group equation to resum the large logarithms of the form

αn
s lnn−1(〈r〉/〈R〉). Fortunately, for a physical bbc baryon, M is only three times larger

than m, 〈R〉 and 〈r〉 likely don’t differ much, hence we don’t need worry much about this

nuisance.

In the following, we will treat the bbc ground state with three different approaches:

point-like diquark approximation, Born-Oppenheimer approximation, and variational me-

thod.

3.3.1 Point-like diquark approximation

In a fictitious world where M is many orders of magnitude heavier than m, the physical

picture simplifies enormously. The influence of c to the motion of very heavy b can be safely

neglected. Consequently, two b quarks in the bbc ground state form a 1s spin-triplet state.

The very compact Bohr radius of b, cannot be resolved by c which is orbiting from far away.

Thus from the perspective of c, the bb cluster is just like a point particle. To distribute

itself in the lowest energy, the c is revolving around this point particle in the corresponding

1s orbital. Being in 3 color state, this compact diquark may be identified with a heavy

antiquark. In this sense, the bbc ground state is analogous to the heavy quarkonium Bc.
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In passing, it is worth mentioning that the doubly heavy baryons, such as bbq states,

fit into this compact diquark picture to a better extent than the bbc state, because the

average distance between q and diquark in the former, ∼ 1/ΛQCD, is considerably larger

than the average distance between c and diquark in the latter, ∼ 1/(mαs). Properties of

doubly-heavy baryons was first studied within a compact diquark picture long ago in HQET

language [23]. Some refinement to this picture, which invokes the nonrelativistic EFT of

QCD to describe the internal excitation of the diquark, has recently come out [20, 24].

The form of (3.21) is particularly convenient to accommodate the compact diquark

picture 2. Because 〈R〉 ¿ 〈r〉 in this case, one may approximate r1 and r2 by r, the color

potential felt by c then becomes −4αs/3r, as if it is due to a heavy antiquark sitting at the

origin. Eq. (3.21) then collapses into two separate hamiltonians, one governing the internal

motion of the diquark, the other governing the motion of c in a central Coulomb potential.

The energy of the bbc ground state is then simply the sum

E = −1

2
Mred

(

2

3
αs

)2

− 1

2
mred

(

4

3
αs

)2

. (3.22)

For a physical bbc state, the mass hierarchy between b and c is far from ideal, so the

usefulness of this oversimplified approximation is doubtful.

3.3.2 Born-Oppenheimer approximation

We now seek an alternative method that explicitly incorporates the effect of finite diquark

size. First observe that an ideal bbc state bears some similarities with the simplest molecule,

the H+
2 ion, in the sense that both are three-body bound states held together by Coulomb

force, and both contain two heavy particles and one much lighter particle. Motivated by

this similarity, one may wonder whether some well-known method developed to analyze

H+
2 can be transplanted here.

A standard tactics to cope with diatomic molecules, such as the H+
2 ion, is Born-

Oppenheimer approximation (adiabatic approximation). This method was originally mo-

tivated by the strong separation of time scales between electronic and nuclear motion,

which is mainly a consequence of the hierarchy me ¿ mN . The recipe of this method is

that, to solve molecular problem, one first determines the electronic eigenstates at fixed

nuclear positions, then takes the corresponding electronic energy as an effective potential,

in conjunction with the internuclear Coulomb potential to describe the nuclear motion.

There is a caveat, however. Despite the aforementioned similarities, one should realize

there is one fundamental difference between H+
2 and the bbc state, that is, the internuclear

Coulomb interaction is repulsive, whereas the Coulomb interaction between b is attractive.

This difference in turn results in drastically distinct properties of H+
2 and an ideal bbc

state. As a result, success of adiabatic approximation to the former does not automatically

guarantee that it can be taken for granted for the latter.

To better orientate ourselves, it is instructive to recall first how an adiabatic picture

arises from the H+
2 ground state [22]. A snapshot of this simplest molecule is that, two

2For pedagogical purpose, in the following two αs in (3.21) will be simply taken equal even in the limit

M/m → ∞.
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nuclei slowly vibrate about some equilibrium positions with small amplitude, whereas the

electron flies around much more swiftly. The vibrational nuclear motion is a consequence of

the balance between internuclear Coulomb repulsion and an effective attractive interaction

induced by the electron. A crucial fact is that the typical period of nuclear motion is much

(∼
√

mN/me) longer than that of electronic motion. It is thus a good approximation to

regard nuclei as frozen when considering the electronic motion, consequently the electron

will distribute itself in the ground state of this static nuclear potential. Moreover, the

electron can be regarded as responding instantaneously to the change of nuclear arrange-

ment, therefore it follows the nuclear motion adiabatically, which implies that it can always

remain in the corresponding ground state for each nuclear configuration.

In contrast, an ideal bbc state bears a completely different structure. As we have

known, this state is characterized by a compact diquark picture. The pull exerted by c

again induces an effective attractive interaction between two b quarks. However, when

superimposed on the attractive Coulomb interaction, it helps, though with a rather minor

impact, to push two b closer. The only agent to prevent a complete collapsing is the kinetic

energy of b. It is interesting to compare the overwhelmingly dominant role enjoyed by the

kinetic energy of b with the insignificant role played by the nuclear kinetic energy in H+
2 .

Based on the point-like diquark picture, one can show that b is confined in a region

about m/M smaller than c, the typical velocities of b and c are about equal (∼ αs), and

the typical kinetic energy of b is about M/m larger than that of c. Obviously, notions such

as “fast c” and “slow b” are simply misnomers. Moreover, uncertainty principle tells that

the typical orbiting period of b is much (∼ M/m) shorter than that of c. As a result, c can

hardly follow the fuzzy pace of b, let alone to readjust itself instantaneously to the ground

state for a particular configuration of b. In sharp contrast with H+
2 , the bbc state exhibits

a completely anti-adiabatic nature.

The above negative argument seems to persuade us to give up adiabatic approximation

in analyzing an ideal bbc state, since the orthodox picture on which this method is based is

badly violated. Ironically, this method practically does yield correct result for this state.

The reason can be traced as follows. We have argued that it is difficult for c to react

quickly to the rapid change of configurations of b. It simply gets confused. However,

the really important point is, what c can see is only a smeared bb cluster which is well

localized in a small region, it doesn’t care about the details going on inside this cluster.

What c can do is to distribute itself in the ground state of the Coulomb potential due

to a remote 3 color source. This is of course nothing but the point-like diquark picture.

Born-Oppenheimer method takes the energy eigenvalue of c in static configurations of b as

effective potential for b. For an ideal bbc state, only the value of this effective potential

at very small separation of b is relevant, which is just the 1s energy of c in the Coulomb

potential of an antiquark. Following the Born-Oppenheimer procedure, the motion of b is

described by a new potential, which is the original Coulomb potential shifted up by this

tiny constant. One then readily reproduces the correct answer, (3.22), for the ground state

energy.

It is now clear that Born-Oppenheimer approximation practically works for an ideal

bbc state because of very compact diquark size. But we certainly are more interested in

– 12 –



J
H
E
P
1
0
(
2
0
0
6
)
0
7
3

the physical bbc state. Since m and M are not widely separated in this case, there is no

more strong separation of time scales, this approximation thus is not expected to yield

accurate result in the first place. Nevertheless, since this method takes the finite diquark

size effect into consideration, which is relevant for a physical bbc state, we will take a

practical attitude, applying it to this state to watch what results will come out.

Let us now concretely analyze the bbc state following Born-Oppenheimer method. To

start, we first approximate the full wave function Ψ as

Ψ(R, r) ≈ Φ(R)ϕ(R, r) , (3.23)

where ϕ represents the charm ground state for a static configuration of b, and Φ stands for

the amplitude to find b in this configuration when c is in the state ϕ.

In the Born-Oppenheimer ansatz, we need first determine the lowest eigenstate ϕ by

solving the Schrödinger equation

[

− ∇2
r

2mred
− 2αs

3

(

1

r1
+

1

r2

)]

ϕ(R, r) = ε(R)ϕ(R, r) . (3.24)

Since the positions of b explicitly enter the potential, the energy eigenvalue ε depends on

R.

This is exactly the same problem as one encounters in H+
2 , to determine the electronic

ground state at fixed nuclear positions, therefore we can follow the standard treatment [25].

Solving (3.24) rigorously is unfeasible, one commonly appeals to variational method. A

reasonable form taken for the trial wave function is a linear combination of 1s charm states

centered on each of b quarks. A variational parameter λ is included in the 1s trial state to

characterize the effective color charge of b perceived by c. Taking the indistinguishableness

of b into account, the trial wave function of c takes the form

ϕ(R, r) =
f(r1) ± f(r2)

√

2 (1 ± S(λ,R))
, (3.25)

where f is given in (3.7). To keep our notation simple, we have chosen to work with the

lighter “baryonic” unit mred = 2αs/3 = 1. The overlap integral is incorporated to make ϕ

normalized,

S(λ,R) =
λ3

π

∫

d3r e−λ (r1+r2) =

[

1 + λR +
λ2R2

3

]

e−λR . (3.26)

The wave function ϕ must be either symmetric or antisymmetric upon interchange of

two b (R → −R), so that the corresponding bb pair, if in relative s-wave, must be either

a spin triplet or singlet in line with Fermi statistics. When combined with c, the former

configuration corresponds to a bbc state with JP = 3
2

+
or 1

2

+
, and the latter corresponds

to a state with JP = 1
2
−
. As is well known in H+

2 , the antisymmetric configuration has

higher energy level than the symmetric one. Since we are only interested in the bbc ground

state, we will discard the state with odd parity.
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Figure 3: λ and effective potential as functyions of R, determined by the variational calculus (solid

line). All the numbers are given in the lighter “baryonic” unit. In the lower half plot, the dashed

curve represents the function given in (3.29), which is hardly distinguishable from the actual one.

We thus choose the symmetric one in (3.25). Multiplying both sides of (3.24) by the

corresponding ϕ∗, integrating over r, one finds that the charm energy reads [25]

ε(R) = −λ2

2
+

λ (λ − 1) − C(λ,R) + (λ − 2) E(λ,R)

1 + S(λ,R)
. (3.27)

The classical interaction integral C and exchange integral E are given by

C(λ,R) =
λ3

π

∫

d3r
e−2 λr1

r2
=

1

R

[

1 − (1 + λR) e−2 λR
]

,

E(λ,R) =
λ3

π

∫

d3r
e−λ (r1+r2)

r2
= λ (1 + λR) e−λR . (3.28)

To locate the minimum of (3.27) at a given R, we resort to the condition ∂ε/∂λ|R = 0.

The analytical expression for the optimum, if can be worked out, would be very cumber-

some, so we are content with providing numerical solutions only. The optimized λ and ε

as functions of R are shown in Fig. 3. In digression, we would like to mention that a trick

adopted by some texts (for example, [25]), which aims to facilitate finding the optimum, is

mathematically inconsistent, therefore we have refrained from using it.

Fig. 3 illustrates some expected features of charm ground state in a static configuration

of b. At R = 0, the bb diquark shrinks to a point, the color charges double, so we have

λ = 2 and ε = −22/2 = −2. This is exactly what we would expect by replacing a point-like

diquark with an antiquark. As R gets large, c will be essentially localized with one of
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the b, forming a 1s state, and the influence of the other b becomes negligible. To put in

a quantitative way, at large R, the effective charge λ ≈ 1, and the energy of c is the 1s

energy plus the potential energy between c and the other b, that is, ε ≈ −1/2 − 1/R.

In the Born-Oppenheimer ansatz, the charm energy plays the role of effective potential

for b. To expedite our analysis, it is convenient to have an analytic formula that mimics

the actual ε(R), which is known only numerically. We find the following parameterization,

εfit(R) = −0.5 − 1.5

1 + 0.586R1.421
, (3.29)

represents a good fit to the actual one, with error less than one percent provided that R is

not too large. As already pointed out, due to the compact diquark nature of a bbc state,

only the knowledge in small R range affects the bound state property.

The remaining task is to determine Φ, with the effective potential taken as input. In

Born-Oppenheimer approximation, the motion of b is simply governed by the following

Schrödinger equation3:

[

−∇2
R

2
− 1

R
+ κ

{

−0.5 − 1.5
[

1 + 0.586 (κR)1.421
]−1

}

]

Φ(R) = E Φ(R) , (3.30)

where κ ≡ mred/Mred. For convenience, we have switched to the heavier “baryonic” unit

Mred = 2αs/3 = 1. Note κ plays the role of scale conversion factor.

This equation can be solved numerically once κ is specified. Consequently, the energy

of the baryon ground state, E, can be identified with the eigenvalue of the corresponding

1s state. The dependence of E on κ in a wide range is shown in Fig. 4. As is expected,

at small κ, the energy predicted from this approach does coincide with the one from the

point-like diquark approximation. Technically, this can be understood by examining (3.30)

in the limit κ → 0, in which the effective potential reduces to a constant −2κ. As discussed

before, the underlying reason should be attributed to the fact that for small κ, only the

value of the effective potential near R = 0 is relevant.

In short, the lesson we have learned is that, even though Born-Oppenheimer approx-

imation is not theoretically justified for an ideal bbc state, this procedure still leads to

correct results because of the compact diquark nature of this state.

As κ increases, the average diquark size becomes comparable with the typical distance

between c and b. In this situation, neither point-like diquark approximation nor Born-

Oppenheimer approximation is expected to make reliable prediction. Nevertheless, since

the latter approach explicitly incorporates the effect of finite diquark size, we may expect it

is closer to the truth than the former. As one can discern in Fig. 4, the prediction of E from

the latter approach becomes incrementally higher than that from the former as κ increases.

This is compatible with our expectation. The larger κ is, the more relevant the contribution

of the effective potential at large separation of b becomes. Since ε monotonically increases

3To arrive at this formula, one has dropped two additional terms containing ∇R ϕ (see [22] for detailed

derivation). This procedure is partly justified by the fact ∇R ϕ ¿ ∇R Φ as expected from the compact

diquark picture. Although a rigorous mathematical proof is absent, we invoke the fact that this procedure

makes correct prediction for an ideal bbc state as an evidence for its validity.
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with R, starting from −2κ (see Fig. 3), thus as κ increases, the E predicted by the Born-

Oppenheimer approximation becomes increasingly higher than the one predicted by the

point-like diquark approximation.

3.3.3 One-step variational estimate

We have shown that both the point-like diquark approximation and Born-Oppenheimer

approximation render correct predictions for an ideal bbc state. However, there is no a

priori reason to expect them to work satisfactorily for a physical bbc state, where m and

M are not so widely separated. A useful indicator is the ratio of the average diquark

dimension to the typical distance between c and b, which is roughly

〈R〉
〈r〉 ∼ κ ≈

2MJ/Ψ

MΥ
≈ 0.6 . (3.31)

Because of poor separation between 〈R〉 and 〈r〉, a more general approach is called for to

analyze the physical bbc state.

In the following we will employ the third method, dubbed one-step variational estimate.

It takes basically the same variational ansatz as used for the bcc and ccc system. However,

due to more complex nature of the bbc system, two variational parameters have been

introduced. The term one-step implies that the ground state energy as well as the full wave

function are determined in a single step, in contrast with Bohr-Oppenheimer procedure,

in which one determines the wave functions of c and b in two successive steps. On general

ground, one expects this method is more accurate than the other two, inasmuch as it is

based entirely on the variational principle and no other approximation is invoked. As long

as the trial wave function is reasonably chosen, we expect it will render reliable prediction

even when κ is not small.

For notational convenience, we adopt the heavier “baryonic” unit Mred = 2αs/3 = 1

here. The hamiltonian (3.21) then simplifies to

hS = −∇2
R

2
− 1

R
− 1

κ

(∇2
r

2
+

κ

r1
+

κ

r2

)

, (3.32)

where the scale conversion factor is included in the c sector.

We first need to guess a proper form for the trial wave function Ψ. It is natural to

follow the ansatz of (3.23), to express Ψ in a quasi-separable form Φ(R)ϕ(R, r), where Φ

represents the b wave function, and ϕ denotes the c wave function, which may be taken the

same as (3.25). This form of trial wave function clearly embodies the point-like diquark

picture in the κ → 0 limit. Since ϕ has incorporated the effects of finite diquark size, this

choice of trial wave function seems reasonable also for large κ. We take the trial wave

function for the bbc ground state explicitly to be

Ψ(R, r) =
1

√

2 (1 + S)

δ3/2

√
π

(κλ)3/2

√
π

e−δR
(

e−κλ r1 + e−κλr2

)

, (3.33)

with the spin wave function suppressed. λ and δ are variational parameters. Note Ψ is

symmetric under the reflection R → −R, as it should be for the ground state. The wave
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Figure 4: The energy of the bbc ground state (in the heavier “baryonic” unit) as function of

mred/Mred. Three curves are generated by implementing three different approximation schemes.

The dot-dashed line has the functional form E = − 1

2
− 2 κ, as can be inferred from (3.22).

function is normalized by incorporating the overlap integral

S =
δ3

π

∫

d3R e−2δR S(κλ,R) =
16 δ3 (2δ2 + 5δκλ + 4κ2λ2)

(2δ + κλ)5
, (3.34)

where S is given in (3.26).

The physical implication of λ is the same as in Born-Oppenheimer ansatz, which

describes the effective charge of b perceived by c, except here it is taken as a constant instead

of a function of R. This simplification seems plausible, at least for small κ. As noticed

before, the typical time scale characterizing the change of configurations of b is in general

shorter than that of c, consequently c only sees smeared trajectories of b. When considering

the impact of b on c, it is reasonable to average its effects over different configurations of

b. This averaging procedure will lead to a constant value of λ.

The new parameter, δ, is introduced simultaneously to characterize the impact of c

on the geometry of the diquark. It would simply equal 1 in the limit κ → 0, when the

influence of c becomes completely negligible.

Taking the expectation value of hS , (3.32), in the trial state Ψ, (3.33), after some

straightforward manipulation, we obtain

E = −δ2

2
− κλ2

2
− κ2λ2

8
+

[

δ(δ − 1)(1 + X )

+κ
[

λ (λ − 1) − C + (λ − 2) E
]

+
κ2λ

4

(

λ + E − 4 δ Y
)

]

/(1 + S) . (3.35)
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Figure 5: Dependence of two optimized variational parameters λ, δ on the the mass ratio

mred/Mred.

The parameters in (3.35) are given by

κ C =
δ3

π

∫

d3R e−2δR C(κλ,R) =
δκλ (δ2 + 3δκλ + κ2λ2)

(δ + κλ)3
,

κ E =
δ3

π

∫

d3R e−2δR E(κλ,R) =
16 δ3κλ (δ + 2κλ)

(2δ + κλ)4
,

δX =
δ3

π

∫

d3R e−2δR S(κλ,R)

R
=

4 δ3 (4δ2 + 8δκλ + 5κ2λ2)

(2δ + κλ)4
,

κY =
δ3

π

∫

d3R e−2δR Y(κλ,R) =
4 δ3 κλ (2δ + 5κλ)

(2δ + κλ)5
. (3.36)

where C, E are given in (3.28), and

Y(λ,R) =
λ3

π

∫

d3r e−λ(r1+r2) ∇R R · ∇R r1 =
R

6
E(λ,R) . (3.37)

It is interesting to note that the contribution of the charm energy, which is previously

computed in Born-Oppenheimer procedure, (3.27), is also subsumed in (3.35) in a similar

format. Besides this, (3.35) also incorporates terms that have been neglected in Born-

Oppenheimer approximation, such as Y (see the comment in Footnote 3).

The minimum of (3.35) can be found by enforcing ∂E/∂λ|δ = ∂E/∂δ|λ = 0. It is

rather difficult to derive analytic expressions for these optima, hence we resort to numerical

method to determine them. Subsequently, the energy of bbc ground state as function of

κ, juxtaposed with predictions made by two other approaches, is shown in Fig. 4. The

optimized values of λ and δ as functions of κ are shown in Fig. 5.
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As is expected, the energy predicted from this approach coincides with those from the

other two in the κ → 0 limit. The technical reason is easily traceable. Note all the integrals

in (3.35) simplify greatly in this limit, e.g., S, X ≈ 1, and C, E ≈ λ. Neglecting higher

order terms, Eq. (3.35) then reduces to

E = −δ2

2
+ δ (δ − 1) + κ

[

−λ2

2
+ λ (λ − 2)

]

+ O(κ2) . (3.38)

The optima δ = 1, λ = 2 can be trivially inferred, and the corresponding energy is exactly

the same as (3.22), which was first derived in the point-like diquark approximation.

Fig. 5 illustrates some anticipated features of a bbc state. As κ grows, this state starts

to depart from the simple point-like diquark picture, and the effect of finite diquark size

becomes increasingly important. It can be clearly observed that δ ascends in a slower pace

than λ descends. This is compatible with the expectation that the impact of c on b is less

important than the impact of b on c.

One interesting observation from Fig. 4 is that Born-Oppenheimer approximation ren-

ders rather close prediction to that from the variational approach, virtually in all κ range.

The reason is perhaps that those terms dropped by Born-Oppenheimer procedure turn out

to be insignificant in this case. In any rate, this approximation scheme is not expected to

work so well when κ gets large. It is worth mentioning that, when analyzing baryon mass

spectra using phenomenological potential model, Fleck and Richard have also found this

scheme yields rather accurate results [26]. They have attributed it to a lore that asserts

“Born-Oppenheimer approximation works always better than expected”.

We end this section by pointing out an interesting finding. In the complicated expres-

sion for E, (3.35), the last two terms nearly cancel with each other in virtually all the range

of κ, once the optimized values of λ and δ are used. We thus achieve a great simplification:

E ≈ −δ2

2
− κ

λ2

2
. (3.39)

This approximate formula works surprisingly well. It deviates from the actual one by 3%

in maximum in the range κ < 1. If one restricts to the smaller range κ < 0.8, the error of

this formula is less than 1%.

Without a deeper understanding, one might simply regard the success of (3.39) as a

fortuitous coincidence. If taken seriously, it seems to indicate that the point-like diquark

picture might be useful even at large κ. It will yield the right answer, if one pretends that

the color potential between two b quarks is −δ/R, and the bb diquark perceived by c is

equivalent to an antiquark carrying the color charge λ.

4. Phenomenology

In this section, we will assemble the knowledge gleaned in the preceding section to estimate

masses of various lowest-lying triply heavy baryons. We then compare our results with other

work in literature, and discuss corresponding implications.

It should be first realized that our predictions will be sensitive to the input of heavy

quark masses. Therefore, it is important to specify an appropriate quark mass scheme to
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lessen arbitrariness. Since our working assumption is the weak-coupling regime, it is most

consistent to express the heavy quark pole mass in terms of the masses of lowest-lying

quarkonia, J/Ψ and Υ, assuming they are the weakly coupled system. At order α2
s, we can

write mc and mb as

mc =
MJ/Ψ

2

[

1 +
2α2

s(µ)

9

]

,

mb =
MΥ

2

[

1 +
2α2

s(µ)

9

]

. (4.1)

We will take the physical values MJ/ψ = 3.097 GeV, MΥ = 9.460 GeV as input.

We are now at a position to express the masses of tripled-heavy baryons in perturbative

expansion. We start from Ωbcc. Using the result of (3.11), we find

MΩbcc
= mb + 2mc + E

=
MΥ

2
+ MJ/Ψ +

[

2

9
MJ/ψ +

1

9
MΥ −

(

7

8

)2 MJ/ΨMΥ

2 (MJ/Ψ + MΥ)

]

α2
s(µ)

=
MΥ

2
+ MJ/Ψ [1 + 0.273α2

s(µ)] . (4.2)

In expressing the reduced mass, we simply replace mc with half of MJ/Ψ, and mb with half

of MΥ. This simplified procedure induces an error of order α4
s to the baryon mass, thus

legitimate at present O(α2
s) accuracy.

The masses of baryons made of three identical quarks can be estimated in a similar

manner. With the input from (3.19), we infer the Ωccc mass to be

MΩccc
= 3mc + E

=
3MJ/ψ

2

[

1 +

(

2

9
− 0.925

6

)

α2
s(µ)

]

=
3MJ/ψ

2

[

1 + 0.068α2
s(µ)

]

, (4.3)

and the Ωbbb mass can be obtained by making obvious replacement.

For the bbc state, we have attempted three different approaches to estimate the binding

energy. Since the one-step variational estimate is believed to be most reliable, we will adopt

its prediction (though Born-Oppenheimer approximation yields a close result, as disclosed

in Fig. 4). First we need specify the value of κ, the ratio of two reduced quark masses. It

can be approximated as

κ ≈
4MJ/Ψ

MJ/Ψ + 2MΥ
= 0.563 , (4.4)

and the error brought in by this procedure is assumed to be negligible.

The optima can be determined numerically from (3.35) by variational ansatz:

δ = 1.137 , λ = 1.603 , (4.5)
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with the corresponding energy

E = −1.363 −→ −1.363Mred

(

2αs

3

)2

, (4.6)

where we have inserted the Bohr energy of b quark in the last entity.

Piecing everything together, we obtain

MΩbbc
= 2mb + mc + E

=
MJ/Ψ

2
+ MΥ +

[

MJ/ψ + (2 − 1.363)MΥ

] α2
s(µ)

9

=
MJ/Ψ

2
+ MΥ [1 + 0.107α2

s(µ)] . (4.7)

So far we have treated each of triply-heavy baryons separately, it is not yet clear

whether there is any connection among them. Interestingly, there is a mass convexity

inequality relating different baryon states, which arises from general reasoning in QCD [27].

To our interest, such an inequality demands

MΩbbc
≤ 2MΩbcc

− MΩccc
. (4.8)

The underlying assumption of this theorem is universal interquark potential. Taking αs in

(4.2), (4.3) and (4.7) to be equal, we readily verify that our predictions based on variational

ansatz are indeed compatible with this QCD theorem.

There also exists another inequality, which relates the masses of baryons and mesons

[28, 29]. This is derived from the assumption that the quark-quark potential in a baryon is

a half of the quark-antiquark potential in a meson, which is de facto satisfied in Coulomb

bound states. To our purpose, this inequality reads

MΩbbc
≥ MΥ

2
+ MBc

. (4.9)

To make a consistent examination of this relation, we need treat Bc also as a weakly-

coupled state, which is believed to be the case [17]. Following the preceding procedure, we

can express the Bc mass as

MBc
=

MΥ

2
+

MJ/Ψ

2
+

[

MΥ + MJ/ψ −
4MJ/ΨMΥ

MJ/Ψ + MΥ

]

α2
s(µ)

9

=
MJ/Ψ

2
+

MΥ

2
[1 + 0.076α2

s(µ)] . (4.10)

One can promptly check that this inequality also holds in our case.

A simple variant of (4.9) is to specify all the quarks to be of a single flavor [28]:

MΩccc
≥

3MJ/ψ

2
. (4.11)

Our prediction in (4.3) indeed respects this requirement.

To make quantitative estimates for the baryon masses, we need specify at which scale

the strong coupling constant should be evaluated. In principle, physical observables should
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Bjorken [4] This work Vijande et al [30]

Ωbcc 8.200 ± 0.090 7.98 ± 0.07 –

Ωccc 4.925 ± 0.090 4.76 ± 0.06 4.632

Ωbbb 14.760 ± 0.180 14.37 ± 0.08 –

Ωbbc 11.480 ± 0.120 11.19 ± 0.08 –

Table 1: Predictions for the masses of lowest-lying triply-heavy baryons from various work. All

the masses are given in unit of GeV. In the entries for Ωbcc and Ωbbc, the JP = 1

2

+
and JP = 3

2

+

partners are not distinguished since the hyperfine splitting has been neglected.

be independent of the choice of µ, once the all-order perturbative expansion has been

worked out. In practice, since what we have so far is only the leading order perturbative

correction, our predictions are unavoidably sensitive to the choice of µ. To reduce the

scale ambiguity optimally, we should take µ in proximity to the characteristic momentum

transfer scale in a given QQQ state.

It is an empirical fact that the typical momentum transfer scales in J/ψ, Bc and Υ are

about 0.9, 1.2 and 1.5 GeV, respectively. One might expect that the corresponding scale in

the QQQ states would be considerably lower than that in their quarkonium counterparts.

Encouragingly, as we have learned in Sec. 3, the effective color strength between a pair of

quarks gets enhanced due to the presence of the third quark. As a result, the actual wave

function is more compressed than naively expected. Therefore, it is not unreasonable to

choose the scale for a QQQ state close to the one typically taken for its QQ counterpart.

We assign µ = 1.2 GeV in the mass formula for Ωbcc, Ωbbb and Ωbbc, with a corresponding

αs = 0.43; for Ωccc, we take µ = 0.9 GeV, with αs = 0.59. To compensate for our

ignorance in uncalculated higher order corrections, we estimate the uncertainty in each

mass prediction to be the leading O(α2
s) correction multiplied by another factor of αs

4.

Our predictions to the masses of various QQQ ground states, together with those made

by other authors [4, 30], which employ some phenomenological confinement potentials, are

compiled in Table 1. The apparent discrepancy between the predictions of the Ωccc mass

by Bjorken and by Vijande et al, which is as large as 300 MeV, might reflect the large

uncertainty inherent in phenomenological approaches5. In contrast, our predictions are

based on the perturbation theory, being systematically improvable, suffer less arbitrariness.

It can be readily recognized that Bjorken’s predictions are systematically higher than

ours. Note the variational method by default underestimates the binding energy, and

a more accurate weak-coupling analysis will predict even lower masses for QQQ ground

states, hence further enlarging this disagreement.

Note that the O(α2
s) corrections in (4.2), (4.3) and (4.7) are all positive, so as we lower

down µ, which is meant to be the characteristic momentum scale, our predictions will shift

upwards, getting close to Bjorken’s predictions. When µ descends further and becomes

4Note in this work we have completely ignored the nonperturbative mass corrections due to ultrasoft

gluons. Therefore the actual error should be larger than what are quoted in Table 1.
5Note the very low Ωccc mass predicted by Vijande et al violates the mass inequality (4.11).
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comparable with ΛQCD, our method breaks down and one enters the strong-coupling regime.

In a sense, Bjorken’s results can be considered as arising from a strong-coupling analysis.

The future experiments and lattice QCD simulations will decide which prediction is

closer to the reality, consequently nature of the QQQ ground states may be revealed.

5. Summary and outlook

The theme of this work is to estimate the masses of various lowest-lying triply heavy baryon

states, with the assumption that they are weakly-coupled system, analogous to Υ, Bc and

J/ψ. Our philosophy is exactly the same as that assumed in those work dedicated to

calculate the lowest-lying quarkonia masses using perturbative QCD [14 – 19], despite the

fact that tackling the 3-body problem is technically more challenging than tackling the

2-body problem.

For our purpose, it is important to make a sound estimate for the binding energy of

a nonrelativistic three heavy quark system, which is bound by short-distance interquark

potentials that are organized by powers of αs and 1/M . Due to our incapability of rigorously

solving 3-body problem, we have invoked the variational method as an approximation

scheme to analyze various QQQ ground states. As a first step, we have estimated the most

important piece, i.e., the O(α2
s) contribution to the binding energy, with only the tree-level

static potential incorporated.

For the variational method to be accurate, it is important to choose a reasonable

form of trial states. In view of this, different triply-heavy baryon states, the bcc, ccc

(bbb) and bbc states, have been analyzed separately, each supplied with a different trial

wave function motivated by the symmetry consideration and the presence of hierarchy

mb À mc. Inspired by the similarity between our baryonic system and the three-body

atomic system, some guidances have been taken from the familiar textbook treatment of

helium atom and the ionized hydrogen molecule. Among various QQQ states, the bbc state

is the most interesting one but most challenging to analyze. We have carried out a detailed

study for this state, employing several different approaches. The implications of different

approaches are elucidated, and in particular the relevance of the compact diquark picture

has been discussed.

Masses of various QQQ ground states derived from our formalism are compatible with

those well-known mass inequalities in QCD. Our quantitative predictions, which is based on

the weak-coupling treatment, are systematically lower than Bjorken’s, which may instead

be viewed as resulting from a strong-coupling analysis. It leaves for future experiments

and lattice QCD simulation to decide the nature of the lowest-lying triply heavy baryons,

whether to be weakly coupled or strongly coupled.

Besides the ability to estimate the masses, our analysis also provide some reasonable

knowledge about the quark wave functions. This will be useful, for example, in estimating

the hyperfine splittings in the bcc and bbc states. One important byproduct of this knowl-

edge is that a reasonable value of the wave function at the origin can be inferred. Like

in a heavy quarkonium, this quantity is one of the basic characteristics of a triply-heavy
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baryon state, and is of some phenomenological interest. For instance, this value is a crucial

input for reliably calculating the fragmentation function for the QQQ states [6].

It will be valuable if some powerful numerical methods developed to tackle the 3-

body problem, e.g., choosing more complicated form of trial wave functions other than the

simple exponential one adopted in this work, or employing the hyperspherical expansion

method [31], are utilized to check the accuracy of our results6. Based on our experiences

in few-body atomic problem, we expect that the uncertainty in our simple variational

analysis should be small. The most important point is that, however, any improved mass

predictions for the weakly-coupled QQQ ground states starting from the hamiltonian (3.4)

will be lower than ours by default, which in turn will reinforce, instead of weaken, the key

conclusion of this work, that the mass predictions based on weak-coupling analysis will

be systematically lower than those based on the consistent strong-coupling analysis, e.g.,

Bjorken’s predictions.

One apparent improvement on this work is in prospect. As stressed several times be-

fore, we have only incorporated the tree-level static potential in this work, so that our

predictions suffer from considerable scale dependence. The perturbative matching calcula-

tion for the one-loop static potential and tree-level O(1/m2) potentials is straightforward.

It will be useful to implement their contributions into our variational framework.
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